计算机视觉顶会(ICCV、CVPR、ECCV)
论文 | 代码 | 期刊/年份 | 作者/学校 | 备注 |
---|---|---|---|---|
PointNet | py2.7 | CVPR 2017 | Charles R. Qi/Stanford University | 分类、语义分割,主页 |
PointNet++ | py2.7 | NIPS 2017 | Charles R. Qi/Stanford University | 分类、语义分割,主页 |
F-PointNet | py2.7 | CVPR 2018 | Charles R. Qi/Stanford University | 3D检测,主页 |
3DMatch | Matlab 2016a | CVPR 2017 | Andy Zeng/Princeton University | 主页,CVPR2017口头报告,4分钟介绍视频 |
DenseFusion | pytorch | CVPR 2019 | Chen Wang/Stanford University | 主页 |
SGPN | tf1.3.0,数据下载 | CVPR 2018 | Weiyue Wang/University of Southern California | 点云的实例分割,基于PointNet++,作者主页 |
ASIS | py2.7 Ubuntu1404 | CVPR 2019 | Xinlong Wang/The University of Adelaide | 点云的实例分割、语义分割,作者主页 |
PointNetLK | PyTorch 0.4.0 | CVPR 2019 | Yasuhiro Aoki/Carnegie Mellon University | 点云配准 |
PointRCNN | PyTorch 1.0 | CVPR 2019 | Shaoshuai Shi/The Chinese University of Hong Kong | 二阶段3D检测 |
The Perfect Match | tf | CVPR 2019 | Zan Gojcic/ETH Zurich | 点云配准 |
PointConv | py2.7, tf1.11.0, CUDA9.0, cuDNN7.3, Ubuntu16.04 | CVPR 2019 | Wenxuan Wu/CORIS Institute | 卷积网络 |
VoteNet | Charles R. Qi/Facebook AI Research | 3D点云检测 | ||
Go-ICP、ICCV版 | c++、py | ICCV 2013、TPAMI 2016 | 点云全局配准,主页 |
机器人顶会(ICRA、IROS、ROBIO):
论文 | 代码 | 期刊/年份 | 作者/学校 | 备注 |
---|---|---|---|---|
Multi-view Self-supervised Deep Learning for 6D Pose Estimation in the Amazon Picking Challenge | Matlab 2015b | ICRA 2017 | Andy Zeng/Princeton University | 项目主页 |
弃看的论文
论文 | 代码 | 期刊/年份 | 作者/学校 | 备注 |
---|---|---|---|---|
PointCNN | py3 | NeurIPS 2018 | Yangyan Li/Shandong University | |
pointSIFT | py3.5 | 2018 | Mingyang Jiang/Shanghai Jiao Tong University | 主页 |
PRIN | pytorch | 2018 | Yang You1/Shanghai Jiao Tong University |
【实时点云3D目标检测(PyTorch)】’Complex-YOLO: Real-time 3D Object Detection on Point Clouds pytorch Darknet’ by AI-liu
《3DMatch: Learning Local Geometric Descriptors from RGB-D Reconstructions》
【用来处理3D点云的Python库】’pyntcloud - pyntcloud is a Python library for working with 3D point clouds.’ by David de la Iglesia Castro
《Iterative Transformer Network for 3D Point Cloud》W Yuan, D Held, C Mertz, M Hebert [CMU] (2018) view
精华:
3D Object Detection 3D目标检测
目前物体6自由度位姿估计(6-Dof pose estimation)有哪些主流方法?
重点视频
PointNet、PointNet++、B站视频-将门创投 | 斯坦福大学在读博士生祁芮中台:点云上的深度学习及其在三维场景理解中的应用
SGPN、分享总结-南加州大学 phd 王薇月:深度学习在点云分割中的应用、课程介绍
ASIS、B站视频-【极市】王鑫龙-CVPR2019联合分割点云中的实例和语义
精华:
点云配准各种方法总结[不定时更新](作者博文有解析PointNet源码的)
以下是配准相关的论文:
CVPR2019论文 The Perfect Match: 3D Point Cloud Matching with Smoothed Densities、3DSmoothNet代码(未开放)
CVPR2017论文 3D Point Cloud Registration for Localization using a Deep Neural Network Auto-Encoder、代码
ECCV2018论文 3DFeat-Net: Weakly Supervised Local 3D Features for Point Cloud Registration、代码
?评价方法 SSRR 2017 3D Registration of Aerial and Ground Robots for Disaster Response: An Evaluation of Features, Descriptors, and Transformation Estimation
Registration with the Point Cloud Library: A Modular Framework for Aligning in 3-DIEEE Robotics & Automation Magazine2015
CVPR 2019 论文汇总(按方向划分,0404 更新中)
3D数据集:
modelnet
ModelNet10.zip、ModelNet40.zip